nPOD. Current nPOD Projects

Enteroviral infection as a causative factor in type 1 diabetes

Considerable evidence has accumulated implying that enteroviral infection is associated with the development of type 1 diabetes but the precise nature of this relationship remains unclear. Many studies have revealed that enteroviral RNA is detectable in patient serum at, or before, the onset of disease but it is unclear whether viral infection also occurs commonly in other organs and tissues at this time. We are investigating this possibility using pancreas (and other tissue) samples recovered from patients with recent-onset type 1 diabetes which are made available from within the nPOD collection. We study these samples in parallel with a larger collection available to us within the UK.

Our initial aims are to evaluate whether enteroviral infection can be detected at the level of the pancreas in patients with type 1 diabetes and to compare the prevalence with relevant age-matched controls. To achieve this, we are employing immunological approaches using antisera raised against enteroviral capsid proteins to detect infected cells and to provide unambiguous identification of these cells. Such studies are coupled to parallel experiments designed to define whether a “viral footprint” can also be found which would indicate that infected cells mount an active anti-viral response. Among the candidate molecules comprising such a “footprint” we are examining relevant pathogen recognition receptors, pro-and anti-apoptotic proteins, interferon response genes and downstream targets of interferon signalling.

A further goal is to establish whether the infection of islet cells by enteroviruses follows an atypical course in type 1 diabetes. In particular, we are developing methods to differentiate between more classical acute infections (which culminate in cell lysis) and those which persist for prolonged periods without causing the demise of the cells. We hypothesise that the development of a persistent infection within islet beta-cells might be critical to the initiation of islet cell autoimmunity and we are examining the molecular events that could underpin the development of such a response.

Comments are closed.