Type 1 diabetes results, at least in part, from invasion of pancreatic islets by T lymphocytes and antigen presenting cells (APCs) including macrophages and dendritic cells (DCs). What drives the migration of these immune cells into the islets remains unknown. A key step in the arrival of immune cells to a specific location is adhesion […]
Category: Current nPOD Projects
Targeting Islet-Antigen Specific B Cells for Deletion as a Means to Prevent Type 1 Diabetes
Type 1 Diabetes (T1D) is an autoimmune disease in which the body attacks and destroys its own insulin-producing β-cells. It affects over 3 million people in the United States. For most T1D patients, it is extremely difficult to achieve normal glycemic control even with frequent blood glucose measurements, diet control, careful determination of insulin dosage, […]
Role of TMEM219 Expression in Type 1 Diabetes
The recent failure of immunotherapeutic strategies in the cure of T1D raised questions in considering autoimmunity the sole mechanism responsible for the pathogenesis of T1D. It has been recognized that activation of immune response against self-peptides is essential in the onset of T1D, but its role in the destruction of beta cells, which leads to […]
Expression of Beta-Cell Dedifferentiation-Associated microRNAs in Type 2 Diabetes
MicroRNAs are small endogenous RNAs which regulate gene expression through mRNA decay or translational inhibition. It has been previously demonstrated that microRNAs are pivotal regulators of cell phenotype and fate and are involved in many biological processes such as proliferation, differentiation or apoptosis in a wide type of cells and organisms. Given their prominent role […]
Characterization of T Cells that Recognize Post-Translationally Modified Beta Cell Epitopes from within the PLN
We have recently demonstrated that enzymatically modified peptides derived from beta cell antigens are preferentially recognized by autoreactive CD4+ T cell clones isolated from the peripheral blood of patients with T1D. Furthermore, T cells that recognize these modified peptides are present in the peripheral blood of patients with T1D and have a high affinity, enabling […]