nPOD. Current nPOD Projects

The nPOD-Virus Group

nPOD has now assembled a “cloud” of investigators with diverse expertise, who are interested in collaborative studies, and is ready to take the nPOD research model to a higher level: the nPOD working groups. These groups are intended to collectively tackle key questions in diabetes research.
The nPOD virus working group (nPOD-V) represents a self-assembled a collaborative effort with the goal of investigating the role of viruses in type 1 diabetes through the study of nPOD samples. An innovative concept implemented by the group is “real-time” data sharing, to help coordinate studies and inform strategy adjustments. This approach should accelerate the rate of discovery and maximize the potential for robust results. The premise underlying this collaboration, based on the nPOD research model and the concept of data sharing and collaboration promoted by the nPOD leadership, has been fully embraced by the nPOD-V investigators; we believe that this in itself represent a major step-forward and innovation in the study of complex questions in human disease.
Many studies have linked enterovirus infection to islet autoimmunity and diabetes. Yet, many questions remain about which virus serotypes are linked to T1D, what type of infection they cause, and how this may contribute to the autoimmune process leading to diabetes. Earlier studies from individual laboratories suffered from limitations with samples and reagents, and did not have access to the latest methodological advances. This collaborative effort recognizes those limitations, and addresses them with an integrated and multidisciplinary approach that includes many innovative and powerful technologies that have not been used before for studying viruses in type 1 diabetes. The availability of shared tissues from the same patients and their coordinated analysis provide unprecedented opportunity that investigations can be exhaustive and the most informative.
The precise identification of enterovirus serotypes associated with T1D and a better molecular characterization of the virus host interaction and relation to pancreas pathology could lead to the identification of novel, T1D-specific, biomarkers of infection and potentially novel therapeutic targets. If a virus plays a role in islet autoimmunity, a vaccine or drugs that target viral responses could perhaps become important therapeutic avenues for preventing the triggering of autoimmunity or its progression, reducing patient burden and potential exposure to immunosuppressive or immunomodulatory treatments which can be associated with significant side effects and long term concerns, especially when children are concerned.

Comments are closed.