There is a well-documented rise in the incidence of type 1 diabetes (T1D) in industrialized countries suggesting a role for environmental chemical exposures. Alarmingly, the increased incidence is seen mostly in children under age 5. However, research on environmental chemical exposures and T1D is very limited and there is an urgent need for research to fill this gap in our knowledge. Therefore, the goal of this proposal is to identify environmental pollutants that play a role in the increased incidence of T1D. We hypothesize that in the first years of life in T1D genetically susceptible children certain pollutants trigger damages specific to beta-cells making them more susceptible to the subsequent autoimmune attack. Of particular importance is the possibility that chemicals can directly affect beta cell physiology and thus may trigger initial insults precipitating the activation of self-reactive T-cells. Therefore, we have adapted a novel multi-chemical tissue mapping technology to study chemical quantitative distributions within the pancreatic tissues from T1D patients and healthy controls. Quantitative assessment of distribution of toxic and essential metals can reveal adverse (and protective) effects that occur at the cellular levels and may be overlooked in studies measuring average concentrations in homogenized pancreatic tissue. Laser ablation-based quantitative imaging provides a powerful tool to study the role of environmental toxicants and essential elements in T1D.