Tau is one of the most important known molecules for microtubular dynamic and trafficking within the cells. In neurogenerative disorders such as Alzheimer disease, the tau becomes hyperphosporylated and form insoluble intracellular protein aggregates leading to upregulation of unfolded protein response. At the same time, patients with Alzheimer’s disease show impaired glucose metabolism. Moreover, both insulin-dependent and non-insulin-dependent diabetes lead to cognitive deficits in diabetes patients. Recent studies demonstrated the presence of TAU and its hyperphosphorylated pathogenic forms in islets of Langerhans in Type 2 diabetes patients,suggesting an potential role of TAU in pancreatic endocrine cell function and insulin secretion. Thus, this project seeks to elucidate presence and distribution of total and hyperphosphorylated TAU protein in endocrine cells of pancreatic islets and establish whether accumulation of hyperphosphorylated TAU is associated with aberrant islet unfolded protein response in type 1 and type 2 diabetes.