nPOD. Beta Cell Physiology and Dysfunction

Islet resistance to T1D

Our proposed studies will address a major gap in the understanding of T1D, namely, to identify the mechanisms of beta cell failure from a metabolic as well as an immunological perspective. This specific project has high potential to reveal significant, novel, and translatable information regarding beta cell dysfunction that will be of therapeutic benefit for individuals with both established T1D as well as persons with pre-diabetes. The goal is to identify components of the glucose sensing and insulin secretory machinery pathways that are altered during the natural history of disease progression in type 1 diabetes (T1D), and to characterize the metabolic and immunological signals responsible for the functional loss in beta cell activity that are specifically associated with this disease. This aim will be achieved by performing two lines of experimentation. First, gene expression arrays will be utilized to analyze islet RNA isolated from pancreatic sections of JDRF nPOD cases (representative from the natural history of T1D, alongside of appropriate matched controls) following laser capture microdissection (LCM). These analyses will be undertaken to determine the specific gene expression changes that result in beta cell dysfunction, as well as to identify the immunological signals which are responsible for beta cell failure in T1D. In the second we will use primary human islets obtained from cadaveric donors with T1D as well as non-diabetic subjects, to confirm and extend our associations of phenotypes reflective of beta cell dysfunction. Also, using extended in vitro culture systems to allow for a recovery of beta cell insulin secretory function, followed by expression analysis, we will identify changes in signaling that are reflective of both cellular damage and recovery. These experiments are posed to test the overall hypothesis that that following the appearance of autoantibodies, inflammatory signals act to increase islet inflammation and negatively impact beta cells through downregulation of genes essential for glucose sensing and insulin secretion. Based on previously published work, we expect that the effects of these signals are reversible. Elucidating the immune signals that induce beta cell dysfunction would have a major impact on future treatment strategies as they should provide a means to revive the endogenous beta cell mass.

Comments are closed.