IGF receptor-like 1 and 2, new therapeutic targets for increasing insulin sensitivity and beta cell health

Diabetes mellitus is a complex and multifactorial disease characterized by progressive loss or dysfunction of the insulin-producing beta cells in the pancreas. This results in chronic hyperglycemia and systemic metabolic complications and, in the long-term, in multi-organ damages; together, these complications create enormous medical and social burdens as well as causing premature deaths. Today, over 422 million people worldwide have been diagnosed with diabetes and the number is expected to rise in the next 20 years. Currently no treatment can stop or revert diabetes progression, except bariatric surgery and islet transplantation. However, donor shortage and risks associated with life-long immunosuppression demand the development of alternative therapies. Increasing beta-cell health, proliferation and regeneration is disease modifying and has the potential to cure diabetes. In a screen for novel regulators of endocrinogenesis, we identified a previously uncharacterized regulator of insulin action, beta cell proliferation and blood glucose homeostasis. Experiments are ongoing to validate its usage as target to improve insulin sensitivity and to preserve β cell mass. Since the diabetic beta cells will be the target of the intervention, the nPOD samples will help us to discover changes in the receptor expression during the disease progression.