Mechanisms and dynamics of GAD and GABA in human beta cells

In humans, GAD65 is one of the first targets of autoimmunity and 70-80% of human diabetics have antibodies against this protein. In late-onset patients, circulating GAD65 autoantibodies may even be more predicative of future disease onset than antibodies to insulin. The early appearance of GAD65 antibodies may hold a clue that GAD65 is implicated during the earliest phases of the disease, which makes it an attractive target for interventional therapies to prevent clinical progression. One of the peculiarities of GAD is that this protein is expressed in two isoforms, and only the lighter weight form, GAD65 is immunogenic, while the heavier one, GAD67, is not. Mice predominantly express GAD67 in their beta cells, while rats express both GAD65 and GAD67 and humans only express GAD65. Because the majority of diabetes research is conducted on NOD mice where GAD65 is not well expressed in beta cells, the central importance of GAD65 in human diabetes may be overlooked in NOD mouse research. We are studying GAD65 in human tissues to better understand how this protein contributes to T1D. In addition, we have an interest in the role of gama-aminobutyric acid (GABA), the enzymatic product of GAD. GABA is a potent neurotransmitter that is strongly and selectively synthesized in neurons and pancreatic islets. Beta cells secrete GABA as a paracrine and autocrine signal to help regulate hormone secretion. GABA is also a negative regulator of immunity and helps shape the islet local immune microenvironment.