Examination of ER stress markers in type 1 diabetes samples in humans

The endoplasmic reticulum (ER) is an organelle that is responsible for the proper folding of proteins and biosynthesis of lipids and steroids. Disruption of ER homeostasis leads to ER stress and activates a highly conserved adaptive network called the unfolded protein response (UPR). ER stress has been implicated in several diseases associated with protein folding defects and low grade chronic inflammation including neurodegenerative diseases, type2 diabetes, and atherosclerosis. The ability of UPR mediators to activate inflammatory and apoptotic signaling suggest ER stress might also be critical in development or progression of type1 diabetes. Despite increasing evidence that points to a critical role for ER stress in the pathogenesis of type1 diabetes, to date alterations in this pathway in human diabetic patients has not been demonstrated leading to a great scientific gap in understanding how organelle stress and related stress responses function in the pathogenesis of this disease. Our specific aim is to investigate the ER stress marker expression in the pancreata of human type1 diabetes and control samples by using immunofluorescence (IF) technique.