Detection of coxsackievirus infection in β-cells in T1D by short fluorescently labeled oligonucleotide probes

Type 1 diabetes (T1D) results from a complex interplay between genetic polymorphisms, immune system and environment. Viruses, mainly enteroviruses such as members of the Coxsackie B virus (CVB) family, have been suspected since long time to trigger diabetes and epidemiological studies support a causative role of viral infections during diabetes onset. Nonetheless, the presence of the enterovirus in diabetic tissue has not been fully confirmed. Here we present an adapted method to target single RNA molecules with short fluorescently labeled oligonucleotide probes in situ, that anneal to common regions of the coxsackievirus family. We successfully detect viral RNA in both cell culture and formalin fixed tissue sections bypassing the potential limitation of fragmented RNA. With the use of small contiguous RNA probes we were able to detect lower levels of strain specific infection compared to classical immunostaining. Specificity of detection was further confirmed without the well-known cross-reactivity with cellular proteins shown by antibodies. Furthermore the use of RNA probes allowed the discrimination between single RNA molecules and virus replication loci. Our data show a novel method to analyze human samples for the presence of enteroviral RNA and will be ideally suited to detect enterovirus infection with a very high sensitivity in paraffin embedded or frozen pancreatic sections.