

Single cell resolution analysis of the human pancreatic ductal progenitor cell niche

AUTHORS

Mirza Muhammad Fahd Qadir^{1,2, §}, Silvia Álvarez-Cubela^{1, §}, Dagmar Klein¹, Jasmijn van Dijk³, Rocío Muñiz Anquela⁴, Giacomo Lanzoni¹, Saad Sadiq⁵, Yaisa B. Moreno-Hernández^{1,6}, Belén Navarro-Rubio^{1,6}, Michael T. García¹, Ángela Díaz¹, Kevin Johnson¹, David Sant⁷, Camillo Ricordi^{1,8,9,10,12}, Anthony Griswold¹¹, Ricardo Luis Pastori^{1,12,*} and Juan Domínguez-Bendala^{1,2,8,*}

¹Diabetes Research Institute, U. of Miami Miller School of Medicine, Miami, FL 33136, USA ²Dept. of Cell Biology and Anatomy, U. of Miami Miller School of Medicine, Miami, FL 33136, USA ³Hanze University of Applied Sciences, Groningen, The Netherlands ⁴VUmc School of Medical Sciences, Vrije Universiteit Amsterdam, The Netherlands ⁵Department of Electrical and Computer Engineering, University of Miami, Coral Gables, USA ⁶Facultad de Medicina, Universidad Francisco de Vitoria, Madrid, Spain ⁷Department of Biomedical Informatics, University of Utah, Salt Lake City, UT 84108, USA ⁸Dept. of Surgery, U. of Miami Miller School of Medicine, Miami, FL 33136, USA ⁹Dept. of Microbiology & Immunology, U. of Miami Miller School of Medicine, Miami, FL 33136, USA ⁹Dept. of Microbiology & Immunology, U. of Miami Miller School of Medicine, Miami, FL 33136, USA ¹⁰Dept. of Biomedical Engineering, U. of Miami Miller School of Medicine, Miami, FL 33136, USA ¹⁰Dept. of Human Genetics/John P. Hussman Institute for Human Genomics; U. of Miami Miller School of Medicine, Miami, FL 33136, USA ¹²Dept. of Medicine, Division of Metabolism, Endocrinology and Diabetes, U. of Miami Miller School of Medicine, Miami, FL 33136, USA ¹²Dept. of Medicine, Division of Metabolism, Endocrinology and Diabetes, U. of Miami Miller School of Medicine, Miami, FL 33136, USA ¹²Dept. of Medicine, Division of Metabolism, Endocrinology and Diabetes, U. of Miami Miller School of Medicine, Miami, FL 33136, USA ¹²Dept. of Medicine, Division of Metabolism, Endocrinology and Diabetes, U. of Miami Miller School of Medicine, Miami, FL 33136, USA ¹²Dept. Of Medicine, Division of Metabolism, Endocrinology and Diabetes, U. of Miami Miller School of Medicine, Miami, FL 33136, USA ¹²Dept. Of Medicine, Division of Metabolism, Endocrinology and Diabetes, U. of Miami Miller School of Medicine, Miami, FL 33136, USA ¹²Dept. Of Medicine, Division of Metabolism, Endocrinology and Diabetes, U. of Miami Miller School of Medicine, Miami, FL 33136

PURPOSE

To analyze the human ductal progenitor cell niche at single cell resolution

METHODS

FACS-sorting of ALK3^{bright+} cells from human pancreatic samples, corresponding to the pancreatic ductal tree. Principal Component Analysis and Clustering. Validation. Sorting and transplantation into immunodeficient mice.

SUMMARY OF RESULTS

We have described multipotent progenitor-like cells within the major pancreatic ducts (MPDs) of the human pancreas. They express PDX1, its surrogate surface marker P2RY1, and the BMP receptor 1A (BMPR1A)/Activin-like Kinase 3 (ALK3), but not carbonic anhydrase II (CAII). Here we report the single cell RNA sequencing (scRNAseq) of ALK3^{bright+}-sorted ductal cells, a fraction that harbors BMP-responsive progenitor-like cells.

CONCLUSIONS

Our analysis unveiled the existence of multiple sub-populations along two major axes, one that encompasses a gradient of ductal cell differentiation stages and another featuring cells with transitional phenotypes towards acinar tissue. A third potential ducto-endocrine axis is revealed upon integration of the ALK3^{bright+} dataset with a single-cell whole-pancreas transcriptome. When transplanted into immunodeficient mice, P2RY1⁺/ALK3^{bright+} populations (enriched in PDX1⁺/ALK3⁺/CAII⁻ cells) differentiate into all pancreatic lineages, including functional β -cells. This process is accelerated when hosts are treated systemically with an ALK3 agonist. We found PDX1⁺/ALK3⁺/CAII⁻ progenitor-like cells in the MPDs of type 1/2 diabetes donors, regardless of the duration of the disease. Our findings open the door to the pharmacological activation of progenitor cells *in situ*.