

Neratinib is a novel inhibitor of MST1 and protects pancreatic beta-cells in diabetes

AUTHORS

Amin Ardestani¹, Sijia Li², Karthika Annamalai¹, Blaz Lupse¹, Shirin Geravandi¹, Aleksandra Dobrowolski¹, Shan Yu², Siying Zhu², Tyler D. Baguley², Murali Surakattula², Janina Oetjen^{1,3,4}, Lena Hauberg-Lotte³, Raquel Herranz¹, Sushil Awal¹, Delsi Altenhofen¹, Van Nguyen-Tran², Sean Joseph², Peter G Schultz², Arnab K. Chatterjee², Nikki Rogers², Matthew S. Tremblay², Weijun Shen² and Kathrin Maedler¹

¹Centre for Biomolecular Interactions Bremen, University of Bremen, Germany ²Calibr at Scripps Research, La Jolla, CA, USA ³Center for Industrial Mathematics, University of Bremen, Germany ⁴MALDI Imaging Lab, University of Bremen, Germany

PURPOSE

The failure of pancreatic insulin producing β -cells is a central pathogenic hallmark of all forms of diabetes. The identification of relevant molecular pathways and pathophysiological events that are responsible for β -cell demise in diabetes is instrumental for the better understanding of disease mechanisms and to ultimately establish a novel diabetes therapy directed toward restoration of beta-cell mass and function. The serine/threonine kinase Mammalian Sterile 20-like kinase 1 (MST1), a core kinase of the Hippo developmental pathway, is a critical regulator of β -cell death and dysfunction in diabetes and its inhibition restores normoglycemia and β -cell function and prevents the development of diabetes. Here we aimed to find a pharmacological MST1 inhibitor with robust β -cell protective actions.

METHODS

With the strategy of repurposing FDA-approved drugs for the therapy of diabetes, we performed a high throughput MST1 inhibition screen across a highly-privileged collection of 641 drug-like kinase inhibitors together with a triaging strategy for selective, non-cytotoxic compounds, and identified neratinib, approved for cancer therapy, as potent MST1 inhibitor. Neratinib was then tested *in vitro* for its efficacy to inhibit MST1 activation and cell death in human islets and INS-1E cells and *in vivo* in a pre-clinical study in type 1 (multiple-low dose streptozotocin; MLD-STZ) and type 2 (obese Lepr^{db/db}) diabetic mouse models. Glycemia, glucose and insulin tolerance and β -cell function were tightly monitored during the study and β -cell mass, survival, proliferation and β -cell identity marker expression analyzed in the isolated pancreata.

SUMMARY OF RESULTS

Neratinib improved β -cell survival under multiple diabetogenic conditions in β -cells and primary human and mouse islets. Without any glucose lowering or β -cell effects in control mice, neratinib restored normoglycemia and β -cell function, survival, and mass, as well as β -cell identity in the MLD-STZ and obese diabetic Lepr^{db/db} mice. MALDI imaging mass spectrometry (MALDI-IMS) showed neratinib distributed throughout the pancreas after i.p.

injection. Neratinib's effect was further confirmed in a therapeutic approach; it fully restored β cell survival in isolated mouse islets from severely diabetic db/db mice, as well as in proinflammatory cytokine treated mouse islets.

CONCLUSIONS

Neratinib is a previously unrecognized inhibitor of MST1 and represents a potential β -cell-protective drug with proof-of-concept *in vitro* in human islets and *in vivo* in rodent models of both type 1 and type 2 diabetes.