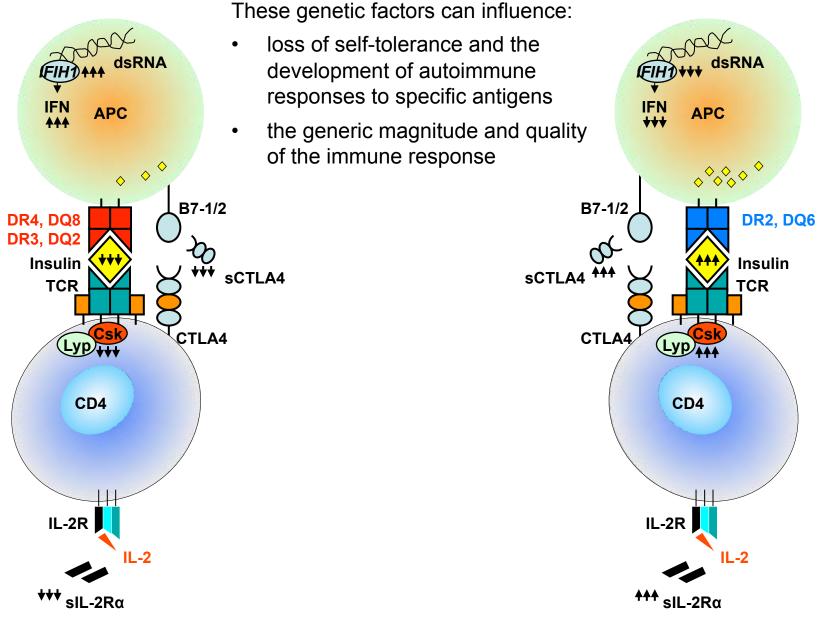
Regulation of Self-Antigen Expression in Relation to Self-tolerance

Alberto Pugliese

Genes and Gene Expression

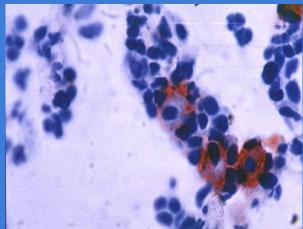

- Genetics (T1DGC etc) identified several T1D risk variants
- Gene expression studies mostly limited to peripheral blood
- At least some gene expression patterns, if genetically determined, could be constant, regardless of disease duration
- Study of nPOD tissues could integrate genetics, epigenetics, and mRNA/miRNA expression studies, performed in disease relevant tissues, and relate to genotypes
- nPOD also affords opportunity to interpret findings in view of pathology, in vitro assessment of cell function/responses
- Studies of disease relevant tissues should also help establish if any relationship exists with blood signatures

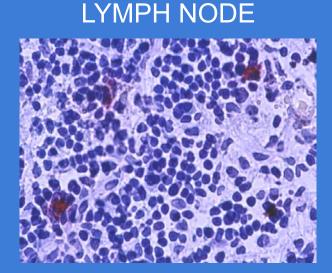
GENETIC PREDISPOSITION

GENETIC RESISTANCE

Self-antigen Expression and Tolerance

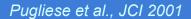
- The recognition of the role of thymic tolerance in T1D susceptibility has led to a paradigm-shift in our view of the disease pathogenesis, until then linked to impaired peripheral tolerance
- At least three loci, HLA, INS and PTPN22 may influence thymic tolerance and perhaps have synergistic effects
- Genetic regulation of thymic expression of self-antigens
 influences disease risk
 - allelic variation (insulin)
 - alternative splicing (PLP, IA-2, IGRP)
 - epigenetic regulation (insulin)





Self-antigens Are Expressed in Thymus and Peripheral Lymphoid Tissues

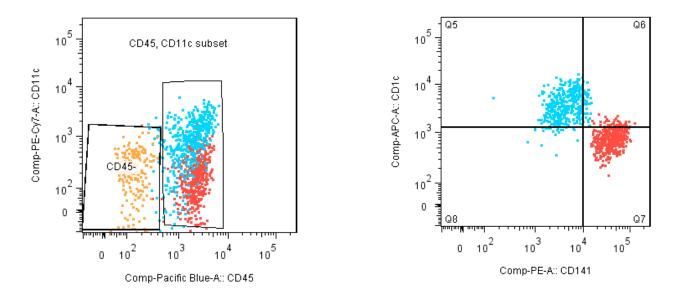
THYMUS



INS mRNAPPTTNTSLLLSS

Redundancy and complexity of self-antigen expression an evolving field

THYMUS


- Transcription-dependent expression

 in mTECs (*Kyewski, Nat Immunol, 2001*)
 in DCs (Pugliese, JCI, 2001; *Garcia, JI, 2005*)
 AIRE controls transcription (*Anderson, Science, 2002*)
- Capture-dependent expression
 by DCs (Gery, JI 2003; Gallego, JEM 2004)

Thymus BDCA1 DCs (CD45⁺MHCII⁺CD11c⁺CD1c⁺CD141⁻) are AIRE-positive and can transcribe *INS*

	Age (months)	0.7	5	5.8	10	16
	mTEC Yield	25000	17528	10130	16784	7784
AIRE ΔCt	mTEC	16.00	13.72	9.73	15.11	15.99
	BDCA1	17.00	13.53	11.78	16.54	20.30
	BDCA3	UD	UD	UD	UD	UD
INS ∆Ct	mTEC	19.1	21.2	13.2	18.7	17.6
	BDCA1	19.8	UD	UD	20.4	20.1
	BDCA3	23.7	21.9	UD	10.1	UD

Isaac Snowhite, DRI, University of Miami, unpublished

Redundancy and complexity of self-antigen expression an evolving field

PERIPHERAL LYMPHOID TISSUES

- Capture-dependent expression by DCs
- Transcription-dependent expression
 - in DCs (Pugliese, JCI, 2001; Garcia, JI, 2005)
 - in lymph node stromal cells (*Turley, Nat Immunol 2007*)
 - in extra-thymic AIRE expressing cells, eTACs (*Anderson, Science* 2008) these do not appear to express insulin
 - Lymph node-resident lymphatic endothelial cells, AIREindependent (Cohen, JEM 2010)
 - Lymph node fibroblastic reticular cells (Fletcher, JEM 2010)
 - Lymph node "Fathman" CD45- cells, Deaf1-dependent transcription – both mouse and human (*Yip, Nat Immunol, 2009*)

Your turn!

