Monoclonal expansions of TCR in a diabetic pancreas

Xufre C., Martínez-Torró C. Usero L., Vico-Oton E., Parladé E., Codina-Busqueta E., Jaraquemada D., Roura-Mir C., Martí M. Universitat Autònoma de Barcelona (Spain)

- Case 1 is the pancreas from a diabetic donor dead 5 days after debut
- Infiltrating CD8⁺ T cells were predominant compared with CD4⁺. Analysis of TRBV repertoire showed a few dominant families (Somoza et al, 2004)
- At onset, genes related to inflamation were upregulated (Planas et al, 2009)

Aims

- Analysis of TRBV repertoire to identify monoclonal expansions
- Comparison of intrapancreatic infiltrating T cell (IPL) repertoire with autologous spleen T cells
- Study of V β 11 (TRBV25) sequences from the pancreas, spleen and expanded T cell lines from IPLs

TRBV FAMILIES WITH MONOCLONAL EXPANSIONS (RI>50%) IN DM-TD AND DM-ISL SAMPLES

5 monoclonal expansions in V β families, with RI>50% (total area>10 and peaks representing more than 50% of the total area), corresponding to V β 1, V β 7, V β 11, V β 17 and V β 22 families

Islet monoclonal expansions were also detected in whole tissue samples, except Vβ11 that was only expanded in islets

(Codina-Busqueta et al, J. Immunol 2011)

• Spleen (MIX D)

Vβ11 in pancreas and autologous spleen from *Case 1*

PBMC from healthy donors

• PBMCs

DM-PB

Network for Pancreatic Organ Donors with Diabetes

5

High frequency of Vβ11 in T cell lines expanded from infiltrating pancreatic lymphocytes

TRVB usage was diverse with predominance of Vβ11 acompanied by a second rearrangement. Vβ11 and Vβ13.1 pairs were the most frequent FACS analysis showed that some V β 11 T cell lines did not show V β 11 protein expression, such as .2i (CD4⁺), .29 (CD4⁺) or .5i (CD8⁺). Only a few showed surface protein expression (.21i).

Transcription factor expression analysis by qPCR, using PBMC as reference value:

.29 expressed both T-bet and GATA-3 and .2i expressed FoxP3 and ROR $\!\gamma$

.2i T cell line suppressed proliferation of CFSE-labeled CD4⁺ effector T cells in the presence of anti-CD3/CD28 beads, in concordance with FoxP3 expression

T cell line : CFSE labeled CD4+ effector T cell

7

Vβ11 was also restricted in other diabetic pancreas and present in healthy pancreas

CONCLUSIONS

- Five monoclonal expansions were defined in the intra-islet infiltrate from which the V β 11 expansion (CASSDPGTQETQYF) was exclusive of islets.
- CDR3 sizes of Vβ11 did not follow a normal distribution in pancreas, spleen and PBMC samples from the diabetic patient (*Case 1*).
- Sequence diversity of V β 11 in the pancreas was lower than in the spleen. The intraislet monoclonal expansion of V β 11 was not found in spleen.
- Cell lines from diabetic infiltrate showed a preference for Vβ11 acompanied by a second rearrangement. Vβ11 was not expressed at the surface of most Vβ11⁺ T cell lines.
- T cell lines coexpressing Vβ11 (CASTPNKQGRGQPQHF, sequence from islets) and Vβ13.1 showed a Th2-like phenotype and were Foxp3 negative.
- These putative non-functional rearranged V β 11 transcripts could not be associated with any regulatory or effector function.
- Vβ11 family was also expressed in other diabetic pancreas but also in healthy donors.

